Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

trans-Diaquatetrakis(3,5-dimethyl-pyrazole- N^{2})nickel(II) dichloride

Magdalena Małecka, ${ }^{\text {a* }}$ Agnieszka Rybarczyk-Pirek, ${ }^{\text {a }}$ Tomasz A. Olszak, ${ }^{\text {a }}$ Katarzyna Malinowska ${ }^{\text {b }}$ and Justyn Ochocki ${ }^{\text {b }}$
${ }^{\text {a Department of Crystallography, University of Łódź, Pomorska 149/153, PL-90236 }}$ Łódź, Poland, and ${ }^{\mathbf{b}}$ Institute of Chemistry, Faculty of Pharmacy, Medical University, Muszyńskiego 1, PL-90151 Łódź, Poland
Correspondence e-mail: malecka@krysia.uni.lodz.pl

Received 20 November 2000
Accepted 19 December 2000
The X-ray structure analysis of $\left[\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$ was undertaken to elucidate the geometry around the Ni^{2+} ion. The molecule lies on a twofold axis which runs through the $\mathrm{O}-\mathrm{Ni}-\mathrm{O}$ atoms. The geometry around the Ni^{2+} ion is best described as slightly distorted tetragonal bipyramidal.

Comment

In recent years, we have investigated the coordination chemistry of metal complexes with N-containing heterocyclic derivatives (Driessen et al., 1988; Małecka et al., 1998; Ochocki et al., 1990, 1992, 1997) because of expected pharmacological activity by analogy to cis-platinum complexes (Hollis, 1989; Reedijk, 1996). Previous studies on this kind of complex showed their significant role in biological processes, which is often related to their coordination ability towards transition metal ions (Ochocki et al., 1998). This work extends the study to transition metal complexes with pyrazoles and their derivatives. Nickel is now recognized as an essential element for bacteria, plants, animals and humans, since it plays an important role in the catalytic activity of enzymes.

(I)

The X-ray structure analysis of the title compound, (I), was undertaken to elucidate the geometry around the Ni^{2+} ion. The central Ni^{2+} ion is in a special position on the twofold axis running through atoms $\mathrm{O} 1, \mathrm{Ni} 1$ and O 2 , and is centred in the slightly distorted octahedral environment. The basal plane is formed by N atoms from the 3,5-dimethylpyrazole ligands and
is distorted, with a tetrahedral angle of $178.3(1)^{\circ}$ (Holm \& O'Connor, 1971). The distortion of the local tetrahedral coordination is assigned in a bending angle of $179.4(1)^{\circ}$ (which shows how far the Ni^{2+} ion is shifted from the geometric centre of the tetrahedron). There is a net of hydrogen bonds (see Table 2). Bond distances and angles in the phenyl and pyrazole rings are in good agreement with expected values (Allen et al., 1987; Orpen et al., 1989).

${ }^{C 13} 4$

Figure 1
ORTEX (McArdle, 1995) drawing of the title compound. Displacement ellipsoids are drawn at the 40% probability level. H atoms attached to C atoms have been omitted for clarity.

An ORTEX (McArdle, 1995) drawing of the title molecule with the atomic numbering scheme is given in Fig. 1.

Experimental

The title compound was obtained by reaction of 3,5-dimethylpyrazole with nickel(II) chloride hexahydrate (4:1 stoichiometric ratio) in ethanol-water (4:1) solution. Light-blue crystals were obtained by slow evaporation from the same solution.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$
$M_{r}=550.18$
Monoclinic, $C 2 / c$
$a=10.505$ (3) A
$b=14.213$ (2) \AA
$c=18.822$ (3) \AA
$\beta=92.77$ (2) ${ }^{\circ}$
$V=2807.1(10) \AA^{3}$
$Z=4$
$D_{x}=1.302 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.300 \mathrm{Mg} \mathrm{m}^{-3}$

$$
\begin{aligned}
& D_{m} \text { measured by flotation in a } \\
& \text { mixture of xylene, bromo- } \\
& \text { benzene, toluene and heptane } \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=6.13-12.76^{\circ} \\
& \mu=0.912 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, light blue } \\
& 0.5 \times 0.2 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku AFC-5S diffractometer

ω scans

Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.560, T_{\text {max }}=0.788$
5343 measured reflections
5110 independent reflections
3056 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.024 \\
& \theta_{\max }=32.57^{\circ} \\
& h=0 \rightarrow 15 \\
& k=0 \rightarrow 21 \\
& l=-28 \rightarrow 28 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 150 \mathrm{~min} \\
& \quad \text { intensity decay: }<2 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.171$
$S=1.050$
5109 reflections
185 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0852 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.026$
$\Delta \rho_{\max }=0.84 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.85 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Ni1-O1	$2.068(3)$	Ni1-N2	$2.115(2)$
Ni1-O2	$2.070(3)$	Ni1-N9	$2.121(2)$
			$90.83(6)$
O1-Ni1-N2	$90.22(6)$	O2-Ni1-N9	$91.88(8)$
O2-Ni1-N2	$89.78(6)$	N2-Ni1-N9	
O1-Ni1-N9	$89.17(6)$		

Table 2
Hydrogen-bonding geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 101 \cdots \mathrm{Cl}^{\mathrm{i}}$	$0.69(3)$	$2.35(3)$	$3.044(2)$	$175(3)$
$\mathrm{O} 2-\mathrm{H} 201 \cdots \mathrm{Cl}^{\mathrm{ii}}$	$0.69(3)$	$2.39(3)$	$3.065(2)$	$166(4)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl}^{\text {iii }}$	$0.87(3)$	$2.40(3)$	$3.242(3)$	$164(3)$
$\mathrm{N} 8-\mathrm{H} 8 \cdots \mathrm{Cl}^{\text {iv }}$	$0.75(4)$	$2.52(4)$	$3.223(3)$	$157(4)$
Symmetry codes: (i) $1-x, 1-y, 1-z ;$ (ii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z ;$ (iii) $x-1,1-y, z-\frac{1}{2}$;				
(iv) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$.				

H atoms bonded to C atoms were treated as riding $(\mathrm{C}-\mathrm{H}=$ $0.96 \AA$), while those on N and O atoms were refined (see Table 2 for bond lengths).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a); cell refinement: $\mathrm{MSC} /$ AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989b); program(s) used to solve
structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: PARST97 (Nardelli, 1996).

This work was supported by the University of Łódź (grant No. 505/667).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1497). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Driessen, W. L., de Graff, R. A. G., Ochocki, J. \& Reedijk, J. (1988). Inorg. Chim. Acta, 150, 41-45.
Hollis, L. S. (1989). J. Med. Chem. 32, 128-136.
Holm, R. H. \& O'Connor, M. J. (1971). Prog. Inorg. Chem. 14, 241-401.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Małecka, M., Grabowski, M. J., Olszak, T., Kostka, K. \& Strawiak, M. (1998). Acta Cryst. C54, 1770-1773.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1989a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1989b). TEXSAN. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.
Ochocki, J., Chauduri, P., Driessen, W. L., de Graff, R. A. G. \& Hulsbergen, F. (1990). Inorg. Chim. Acta, 167, 15-20.

Ochocki, J., Erxleben, A. \& Lippert, B. (1997). J. Heterocycl. Chem. 34, 11791198.

Ochocki, J., Kostka, K., Żurowska, B., Mroziński, J., Gałdecka, E., Gałdecki, Z. \& Reedijk, J. (1992). J. Chem. Soc. Dalton Trans. 20, 2955-2960.
Ochocki, J., Żurowska, B., Mroziński, J., Kooijman, H., Spek, A. L. \& Reedijk, J. (1998). Eur. J. Inorg. Chem. pp. 169-175.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

Reedijk, J. (1996). J. Chem. Soc. Chem. Commun. p. 801.
Sheldrick, G. M. (1990). SHELXS86. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

